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Abstract: This study deals with the sense and avoid problem for an helicopter. The objective of such a system is to early detect
collision targets (typically high-voltage wires). The direction of arrival (DoA) of the target is then a crucial information. In severe
multipath environments (flight over a river, for instance), classical DoA estimation schemes dramatically degrade. The authors
make use of a method based on the maximum likelihood (ML) principle that can resolve two highly correlated and close targets.
The major drawback of ML algorithms, namely the computational burden, is removed using an approximation for closely space
targets. The contribution of this study is twofold. The authors first extend the approximated ML DoA estimation to the case of
non-uniform linear antennas and complete the procedure by a detection scheme. Second, they attest the validity of this new
processing on real radar data. Hence, they show that the proposed procedure is able to detect a high-voltage wire, over a river,
at ranges up to 1 km, where a capon beamformer cannot.

1 Introduction
Nowadays, helicopters are equipped with cable cutters to mitigate
the risk of wire strikes while flying at low altitude. The efficiency
of cable cutters has been demonstrated for cables with diameter up
to 4 mm. However, collisions with cables remain the cause of
numerous fatal accidents despite the experience of pilots. Most
cables involved in accidents correspond to unmarked power lines,
communication wires, cables of aerial tramway, cables for
transportation of explosives, or cable yarding systems.

Possible solutions for cable detection systems include optical
cameras, lidar and radar operating from X-band to Ku-band. The
latter seems to be the most interesting stand-alone solution as it
reaches satisfying probability of detection for a given probability of
false alarms while covering a wide field of view, operating both
day and night, whatever the weather conditions. On the other hand,
radar systems only detect a single scattering point of cables, if
existing, which is located with an aspect angle of 90° (see [1] and
Fig. 1). This problem of wire detection with radar is addressed, for
example in [2, 3]. 

Using an antenna array, various methods can be used to separate
this scattering point from ground returns even at long ranges.
Common high-resolution algorithms can be considered such as
quadratic (e.g. Capon) or subspace methods (e.g. MUSIC). Both
provide optimum performances and reach Cramér-Rao Bound
(CRB) at high SNR [4]. However, their performances could be
significantly degraded when the source signal is correlated with
another scattering point.

This situation can unfortunately be observed during flights
above rivers. At long ranges and low grazing angles the direct path
mixes up with the indirect path bouncing off onto the water.

This multipath is strongly correlated with the direct path,
leading to a biased DoA estimation for quadratic and subspace
methods, and consequently a possible under-estimation of the wire
height.

There are many DoA estimation methods for correlated sources
separation. For example, spatial smoothing [5] is a pre-processing
technique improving source decorrelation. It can be improved with
forward/backward spatial smoothing (FBSS) as in [6, 7] but these
techniques require a high number of sensors. Another class of
approaches, such as the one introduced in [8, 9], define a grid of

investigated angles and exploit multiple measurement vectors by
collecting samples at different time indices. However, these
techniques also require a high number of sensors and need to
assume that the DOAs are constant within a substantial duration.

ML methods are another class of approaches known to be
robust to sources correlation, but require higher computational
resources as they operate in a multidimensional space. However, in
the case of two sources, the maximisation of the likelihood
function can be simplified and reduced to a simpler one-
dimensional search [10, 11]. Moreover, effective and
computationally light methods can be used to estimate the number
of correlated sources. In this paper, we have adapted such a scheme
to detect the number of multipaths. It can be noticed that these
kinds of method work also in the case of rank deficient correlation
matrices [12].

Moreover, we have extended the algorithm to the case of non-
uniform linear arrays to be compatible with future radar front-end
evolutions. Its performance has been compared to conventional
methods on real data, collected with an X-band radar from an
helicopter flying above a river where a cable was hanging above
the water. Achieved results have been significantly improved in
comparison with conventional methods.

The paper is built as follows: Section 2 presents the model at
hand and our proposed scheme to deal with the multipath problem.
Test scenarios description and comparison of performance are
carried out in Section 3. Section 4 concludes the paper.

2 Theoretical background
2.1 Model and assumptions

The problem of finding the DoA of K narrow band planar waves
using an array of M sensors can be expressed as the estimation of a
vector parameter θ using the model:

x(t) = A(θ)s(t) + n(t), t = 1, 2, …, N (1)

where x(t) ∈ ℂM × 1 are the vectors of observed sensor outputs
(snapshots), s(t) ∈ ℂK × 1 are the unknown source signals,
n(t) ∈ ℂM × 1 is an additive noise, θ = θ0 ⋯ θK

T contains DoA
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information to be estimated, and A(θ) ∈ ℂM × K is composed of the
steering vectors a(θk) from each source direction:

A(θ) = a(θ1) ⋯ a(θK) (2)

We consider the following assumptions [13]:

• M ≥ K (at least as many sensors as sources) and A is supposed
to be full rank (sources cannot be exactly collocated in the same
direction).

• The additive noise vector n(t) is assumed Gaussian with zero
mean, circular complex symmetric, spatially and temporally
white: E[n(t1)n(t2)H] = σ2Iδt2 − t1

 and E[n(t1)n(t2)T] = 0, ∀t1, t2.

• s(t) is unknown deterministic complex variables.

As stated in Introduction, classical high-resolution techniques such
as Capon or MUSIC are known to be very sensitive to sources
correlation. As we are dealing with a scenario comprising possible
multipath, we turn towards a more complicated but more robust
method – the ML procedure.

2.2 Maximum likelihood DoA estimation

2.2.1 Exact maximum likelihood estimation: Two kinds of ML
criteria can be developed from model (1) depending on the signal
sources assumption. If the signal sources are considered as
unknown deterministic, the ML procedure will lead to the so-called
conditional maximum likelihood (CML), whereas if the signal
sources are considered as Gaussian random variables, the ML will
result in the so-called unconditional maximum likelihood (UML)
[13]. In this paper, we assume that the signal sources are
deterministic signals, leading to the CML criterion to be
minimised:

θCML = argminθTr P⊥R (3)

where P is the projection operator onto the subspace spanned by
the columns of A(θ) (signal subspace):

P = A(θ) AH(θ)A(θ) −1
AH(θ) (4)

and P⊥ = I − P is the projection onto the noise subspace. This
CML estimate is not strictly asymptotically efficient, that is to say
that it does not tends exactly towards the CRB given in (5) when
the number of snapshots tends towards infinity because the number
of unknowns increases as fast as N [13]. On the other hand, it is
simpler than the UML and it is more general as it does not assume
any hypothesis on s(t) behaviour.

BC = σ2

2N Re(RS ⊙ HT) −1
(5)

where Re[ ] is the real part, RS = (1/N)∑t = 0
N − 1 s(t)s(t)H, ⊙ stands for

the Hadamard (elementwise) product of two matrices and
H = ΔHP⊥Δ with Δ = (∂a/∂θ1), (∂a/∂θ2), …, (∂a/∂θK) .

2.2.2 Approximate CML for two closely spaced targets: Even
in the case of two sources only, one has to solve a non-linear
multidimensional optimization problem to estimate the DoA using
the CML method (3), which can be computationally expensive. To
reduce this complexity, authors in [10, 11] proposed a Taylor series
expansion of the projection matrix P valid in the case of two
sources with close DoAs and for uniform linear array. This
approximation allows to simplify the 2D-minimisation into a
simpler 1D search.

In this paper, we generalise this procedure to the case of non-
uniform linear array (NULA).

When using NULA, the problem cannot be formulated as a
function of spatial frequencies anymore (as in [10] or [11]).
Instead, we parametrise the problem using sin θ1 and
Δsinθ = sin θ1 − sin θ2 directly:

x(t) = A(sin θ1, Δsinθ)s(t) + n(t), t = 1, 2, …, N

with a(sin θ1) = [1, …, e(2iπzk/λ)sinθ1]T, where the M sensors of the
NULA are located at positions z0 = 0, z1, z2, …, zM − 1 and λ is the
wavelength. Conducting a Taylor series expansion for small Δsinθ,
and after some straightforward calculation, we obtain

P ≃ − 1
d2

M2 + M3Δsinθ + M4 − d4

d2
M2 Δsinθ

2 + o(Δsinθ
3 ) (6)

where

dn = ∑
k = 0

n
ckcn − k

∗

ck =
Tr Dk

M

Dk = (2iπ)k

λkk!
diag 0k, z1

k, …, zM − 1
k

Mn = ∑
k = 0

n
Dka(sin θ1)a(sin θ1)HDn − k

H

−cka(sin θ1)a(sin θ1)HDn − k
H − ck

∗Dn − ka(sin θ1)a(sin θ1)H

Substituting (6) in (3) (retaining only the terms up to Δsinθ
2 ) and

differentiating with respect to Δsinθ, we obtain the following
closed-form expressions for the difference:

Δsinθ
ACML(sin θ1) ≃ − α1

2α2
(7)

Fig. 1  Wire detected point
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where

α1 =
Tr M3R
d2(M − 2)

α2 =
Tr M4 − (d4/d2)M2 R

d2(M − 2)

Substituting this closed-form expression for the angular distance
between the targets into (6) and (3), we obtain an ML criterion
depending only on a single parameter, namely θ1. The minimisation
is then straightforward. The proposed method is computationally
equivalent to Capon or spectral MUSIC but produces estimates of
the two DoAs as precise as the 2D CML procedure as soon as the
two paths are close. Moreover, like the ML procedure, we can
expect a robust behaviour to source correlation. However, this
algorithm assumes the presence of two sources, namely the direct
path and a close reflected path in our case of interest. This
hypothesis has to be verified beforehand in a first step, this is the
objective of the next sub-section.

2.3 Detection of the number of paths

Detecting the presence of multipath for a low-elevation target can
be seen as a special problem of detecting the number of sources,
with two more difficulties:

• the possible two sources viewed from the radar are strongly
correlated or nearly coherent

• the DoA of the two sources is close.

In case of non-correlated targets, determining the number of
sources is a classical problem in array processing. Many popular
techniques based on the analysis of the eigenvalues of the
correlation matrix can be used (Akaike's information criterion
(AIC), minimum description length (MDL) and eigenvalue
gradient methods (EGM)) [14, 15]. In case of coherent sources, on
the other hand, there is almost a linear relationship between the
signals from these sources [6], resulting in a rank reduction of the
correlation matrix. Therefore the previous kind of techniques,
based on the eigenvalues decomposition, often fail to detect the
presence of multipath. In [6, 7], FBSS is proposed as a pre-
processing technique to improve source decorrelation. However,
these techniques require a high number of sensors.

Authors in [12] have proposed methods based on joint detection
and estimation to directly estimate the number of sources, rather
than the dimension of the signal subspace. The principle is as
follows. Let K be the assumed dimension of vector θ in model (1)
(number of sources). The technique proposed in [12] is based on
the following result: if K = K and σ2 is a consistent estimator of σ2,
then

Vmin = Min
θ

V(θ) (8)

with

V(θ) = 2N
σ2 Tr P⊥(θ) R + σ4R

−1 − 2σ2I (9)

is asymptotically distributed as a
χ2(2K(M − K) − K) + 2χ2((M − K + 1)(M − K − 1)).

The following estimator can be used for σ2:

σ2 =
Tr P⊥(θ)R

M − K
(10)

Hence, when assuming the real number of paths, K, Vmin is
minimal and we actually know its probability density function. On
the contrary, for a false hypothesis on the number of paths, the
residual Vmin increases. Therefore, we can construct a binary
hypothesis detection test based on Vmin. Indeed, we can compute a
threshold γ corresponding to a given probability P for Vmin to be
lower than γ. Hence, the detection procedure is straightforward,
starting from K = 0 and for a chosen P (say 0.99, for instance), we
can compute γ and test if Vmin is lower. If not, the hypothesis is not
fulfilled and we increase K.

This procedure will be used as a first step to detect the presence
of multipath in the data. If confirmed, the second step described in
Section 2.2.2 is performed. Otherwise, there is only one path and
classical DoA schemes can be used.

To assess the validity of this two-step procedure, we conducted
a real-data experiment described in the next section.

3 Real-data experiment
As stated before, one of the more challenging scenario when
dealing with sense and avoid is when flying at low elevation over
water. This problem (propagation over a plane surface with high
reflection coefficient) is studied theoretically in [16] but real-world
data are difficult to find. Hence, we have conducted a flight test
campaign involving an helicopter flying over the French river
Rhône (Fig. 2). An FMCW radar was embedded in the helicopter. 

In the considered flight test, the aircraft flies with an average
speed of 52 kt (27 m/s) and at an average altitude of 292 ft (89 m).
The helicopter approaches the wire and the distance decreases over
time. The target location is precisely known from the radar frame
of reference (distances and dopplers are known) as well as its real
elevation above water. DoA is evaluated at the range index
corresponding to the target. Hence, we can easily convert the
estimated DoA in target altitude over the water (WGS84
referenced).

The previous algorithm was designed for a general NULA for
future antenna developments, but for this experiment we used a
planar uniform array composed of 18 × 3 sensors. 18 horizontal
sensors allow to compute narrow beams in the azimuth direction.
In each of these 18 beams, a vertical three sensors array, separated
a 3.9 wavelength apart, is used to estimate the elevation angle.

Fig. 2  Typical multipath scenario due to reflection on water
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After range compression, in each azimuth beam, both the range
migration of targets and variations of pitch and roll angles are
compensated during the acquisition of the data. N = 512 snapshots
are then recorded for each range bin. Further details can be found
in [17]. We focus here, on the elevation angle estimation which is a
crucial information to trigger a possible collision alert. In this
challenging scenario, standard DoA estimation algorithms such as
Capon or MUSIC often fail to determine the actual position of the
wire. Indeed, they produce a wrong estimation moving from the
real elevation of the wire to its symmetrical angle from the ground

(ghost target) depending on the respective amplitude of the direct
and multipath (Fig. 3). 

We experiment the above-mentioned two-steps procedure on
this scenario. The first step of the procedure consists in the
detection/estimation algorithm aimed at detecting a possible
multipath contamination. More precisely, the threshold γ for the
hypothesis test based on (8) and for 99% confidence region is equal
to 26 in the particular case of M = 3 and K = 1:

Vmin is a χ2(3) + 2χ2(3) and P Vmin > 26 ≃ 0.01

Then assuming that there is at least one source at a given distance
(reflection of the radar wave by at least the ground) and that a
maximum of two sources can be detected, the general procedure is
simplified as follows:

• Computation of Vmin and θ1 under the assumption K = 1

o If Vmin ≤ 26 then decide K = 1 (no multipath present).
Estimated DoA is θ1.
o Else decide K = 2 (multipath present).

• If K = 2, estimate θ using the approximated CML procedure
described in Section 2.2.2.

We first use Capon to estimate the obstacle altitude. The Capon
spectrum always exhibits a single peak. The estimated target DoA
fluctuates between two positions corresponding to the actual wire
and its ghost elevation. This situation is characteristic of the
presence of a specular multipath over the water leading to the
observation of a ghost target symmetric in position from the water.
Fig. 3 shows this possible biased altitude estimation when the
helicopter flies towards the target. As expected, Capon provides a
temporally biased estimation that is difficult to use to properly
detect a collision.

The presence of this strong multipath is confirmed by the
procedure described above. Indeed, Fig. 4 represents the calculated
value of Vmin as the range decreases and the corresponding
threshold. We clearly see that this residual value is 15 dB stronger
than the threshold, by the way detecting the presence of the
multipath and validating the first stage of the proposed procedure. 

Then, the second step of the procedure can be performed and
Fig. 5 represents the resulting altitudes of the two targets. Using the
proposed approximated CML procedure, we can see that the two
estimated positions are symmetric from each side of the water level
and the upper one is close to the real wire altitude. 

We have also computed the real 2D CML DoA estimates on
Fig. 6, for comparison. We can see that the proposed scheme
provides a like-for-like estimation but with a computational burden
largely reduced and compatible with real-time applications. 

Indeed, computation load of the proposed ACML procedure is
studied in Fig. 7, for a basic grid-search algorithm with 1000 points
(the number of angles must be high enough as we are looking for
high resolution to separate multipath at high distance). It is
compared with 2D CML minimisation. The proposed ACML
estimation achieves performance comparable with 2D ML
minimisation but with computation time 500 times lower. 

The proposed ACML is then able to separate the direct path and
the reflected one for ranges up to 1 km using a three sensors array
antenna and with computation load compatible with on board real-
time computation. It has to be noticed that the target altitude is only
a 16 m above the water level, corresponding to two correlated
sources with a DoA difference of about 1.8 at a 1 km range, for a
vertical antenna beamwidth of ∼7.

Based on these real-data altitude estimations, we can evaluate a
rough root mean square error (RMSE) by averaging these results
on 60 consecutive measurements. Fig. 8 presents these RMSE and
shows the improvement compared to Capon: the error is about a
few meters high up to 1 km with the two methods (2D CML and
proposed ACML). 

Fig. 3  Obstacle estimated WGS84 elevation with Capon algorithm after
motion compensation

 

Fig. 4  Detection criterion and comparison to theoretical threshold
 

Fig. 5  Obstacle estimated WGS84 elevation with ACML algorithm after
motion compensation

 

4 IET Radar Sonar Navig.
© The Institution of Engineering and Technology 2017



4 Conclusion

In this paper, we presented a new procedure to estimate the DoA of
a target in a severe multipath environment, for a sense and avoid
security system. This method is composed of two steps. The first
one consists in detecting the presence of a possible multipath. The
second is based on an approximated version of the ML method,
originally dedicated to uniform linear arrays, that has been
extended to NULA. The computational burden of this algorithm is
light and can be implemented on a real-time radar system. We have
demonstrated through a real-data experiment that the proposed
scheme outperforms classical high-resolution methods and is able
to properly estimate the altitude of a low-elevation wire over water
for >1 km, allowing then a reliable collision warning.
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Fig. 6  Obstacle estimated WGS84 elevation with 2D CML algorithm after
motion compensation

 

Fig. 7  Compared computation loads of 2D CML and proposed ACML
procedure

 

Fig. 8  Estimated RMSE of elevation 1 (wire height estimate) obtained with
the proposed two-step algorithm using the three procedures (Capon, ACML
and CML)
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