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Abstract—Acquisition devices play an important role in digital
signal processing. The possibility of a perfect reconstruction is
demonstrated in regular as well as irregular sampling when the
number of samples in the observation interval is high enough in
function of the bandwidth of the sampled signal (length of the
support of the spectrum). In the case of high sampling rates,
imperfections of acquisition devices can introduce non negligible
errors (when the acquisition duration of a given sample becomes
not negligible in comparison with the sampling period (or mean
sampling period in the case of irregular sampling). In this paper,
explicit method is proposed to take into account imperfections
of the sampling device in order to improve the reconstruction of
the signal. The proposed method is applicable for deterministic
functions and random processes in the case of regular sampling,
as well as irregular sampling.

I. INTRODUCTION

In 1897, E. Borel wrote that the function f (z) defined as

f (z) =

∫
∆

φ (x) eizxdx (1)

for regular enough φ (x) ,∆ = [−π, π], is perfectly defined
by the f (±1) , f (±2) , ... i.e by the value of f at a periodic
sequence of points (exact assumptions can be found in [1]).
The property can be extended to other kinds of sets ∆
when some conditions are fulfilled (alias-free sets). More
generally, Borel linked the theory of zeros of entire functions
and interpolation which generalized the property to irregular
sequences f (tn) , n∈ Z where the tn sequence is no longer
periodic [2].

Actually, a realistic acquisition device has a working time
different from zero. This means that resulting estimated sam-
ples of f (t) are deduced from the behavior around time
t and not from a local value at a single point. Numerous
situations are studied in the literature: irregular or regular
sampling, nonideal acquisition and random acquisition. When
acquisition device effects are represented by a convolution
product (between the signal to be sampled and the device’s
impulse response), solutions are proposed in [3]. The notion
of consistent sampling was popularized in this last paper and
it lightens constraints about spectral supports [4]. But those
solutions are valid in the periodic case only (regular sampling).
In this paper we present a solution for the non periodic
sampling case and which is valid in the case of deterministic
functions as well as random processes.

For stationary random processes, the S. P. Lloyd paper [5]
can be viewed as the foundation of the sampling theory. In the
periodic case, it generalizes the notion of bandwidth and the
notion of Landau bound rather than Nyquist bound [6]. It links
conditions of errorless reconstruction to the notion of alias-
free spectra and proposes explicit formulas. Let us put in the
framework of stationary random processes with acquisition by
linear invariant filters around an irregular sequence of points.
Errorless reconstruction depends on the spectral support and
formulas are common to the set of processes with the same
spectral support. A formula fitted for a given process is also
true for its filtered versions. This property allows us to con-
struct errorless formulas linking a random process realization
and irregular samples coming from a nonideal acquisition
device.

Explicit formula allowing errorless reconstruction using
Periodic Nonuniform Sampling of order 2L (PNS2L) have
already been published in [7]. In this paper, we demonstrate
how they can be corrected to take into account the knowledge
of the impulse response of a non ideal acquisition device.
Section II presents mathematical problem formulation and
simulations are carried out in section III, demonstrating the
accuracy improvement of reconstruction. Section IV concludes
the paper.

II. PROBLEM FORMULATION

A. Hypotheses
We consider a zero mean stationary process

Z = {Z (t) , t ∈ R} with regular power spectral density
sZ (ω) defined by [8]

E [Z (t)Z∗ (t− τ)] =

∫
∆

eiωτsZ (ω) dω (2)

where E[.] and the superscript ∗ stand respectively for the
mathematical expectation (or ensemble mean) and complex
conjugate. ∆ is the total spectral support of Z:

∆ = {ω ∈ R, sZ (ω) > 0} . (3)

Moreover, we consider
• a sampling sequence t = {tn, n ∈ Z} defined as an

increasing series of real numbers (sampling instants).
• some regular enough function g (t) (impulse response

of the acquisition device) defined on R with Fourier
transform



G (ω) =

∞∫
−∞

g (t) e−iωtdt. (4)

Practically, g (t) will be a function with a maximum nearby
the origin t = 0, and quickly vanishing.

Let the process U = {U (t) , t ∈ R} be defined as

U (t) =

∞∫
−∞

g (t− u)Z (u) du. (5)

U =G [Z] is the output of a LIF (Linear Invariant Filter) with
input Z, complex gain G (ω) and impulse response g (t). We
assume that a finite sequence of data U (tn) is available at the
output of the acquisition device. This means that the device
provides a measurement of Z (t) around the point t = tn
approaching Z (tn) as g (t) approaches a very narrow function
with unit surface (Dirac function). We don’t know the values
of Z (t) at determined points tn but we know the behavior
of Z (t) in a neighborhood of tn. This is a realistic view
of sampling, taking into account the device producing the
data. Formula (5) defines a ”linear invariant acquisition”, more
general that a punctual one.

B. Interpolation taking into account the ”shape” of the sam-
pling device

In this section, we consider that the sampling device pro-
vides samples at known time instants (periodic or not) and with
imperfect (but known) shape g(t): the process U (representing
the observed process, after imperfect sampling device) is a
stationary process with spectral density

sU (ω) =
[
|G|2 sZ

]
(ω) . (6)

If G (ω) is nonzero on ∆, ∆ is the spectral support of Z and
U in the same time. In this circumstance, the FSE (Fourier
Series Expansion) of eiωt on ∆ [9]

eiωt =
∑
n∈Z

αn (t) eiωtn , ω ∈ ∆ (7)

leads at the same time to the following relationships:
U (t) =

∑
n∈Z

αn (t)U (tn)

Z (t) =
∑
n∈Z

αn (t)Z (tn) .
(8)

Roughly speaking, an interpolation formula is equivalent
to a generalized Fourier series of eiωt convergent on the
spectral support. In practice, only a finite number of samples
are available and the sums in (8) are truncated. If G (ω) is
a nonzero function on interval ∆, we can define a LIF G−1

such that

Z (t) = G−1 [U] (t) =
∞∫
−∞

g−1 (t− u)U (u) du

g−1 (t) = 1
2π

∞∫
−∞

G−1 (t) e−iωtdt

G
−1

(ω) =

{
1/G (ω) , ω ∈ ∆

0, ω /∈ ∆.

(9)

G
−1

(ω) and g−1 (t) are the complex gain and the impulse
response of G−1. We have also

Z (t) = G−1 [U] (t) =

∞∫
−∞

g−1 (t− u)

[∑
n∈Z

αn (u)U (tn)

]
du.

Changing the order of summations, we obtain the sampling
formula

Z (t) =
∑
n∈Z

 ∞∫
−∞

g−1 (t− u)αn (u) du

U (tn) (10)

The error consisting in using samples U (tn) as estimations of
Z (tn) can be expressed as

σ2 = E
[
|Z (t)− U (t)|2

]
=

∫
∆

|1−G (ω)|2 sZ (ω) dω.

(11)

C. Interpolation with non uniform samples using PNS2L

In the particular case of periodic sampling of a baseband
signal with tn = n/fs, coefficients αn(t) can be deduced from
the well known Shannon reconstruction formula:

αn(t) =
sin (πfs(t− tn))

πfs(t− tn)
(12)

In this section, we consider the more general case of a spectral
support not necessarily centered on 0. Moreover, we assume
an irregular sampling of the process U = {U (t) , t ∈ R} (non
periodic but known time instants) and we show how to derive
coefficients αn(t) in this case, using previously published
PNS2L [7].

Let define frequency bands ∆k, 1 ≤ |k| ≤ L as

∆k =

 ω0 +
[

(k−1)π
L , kπL

[
, k ≥ 1

ω0 +
]
kπ
L ,

(k+1)π
L

]
, k ≤ −1

. (13)

Intervals ∆k define a partition of interval ∆ (ω0 is the
pulsation corresponding to the center of spectral band ∆) in
2L intervals of length π

L . Defining Uk = {Uk (t) , t ∈ R} as
the result of an ideal bandpass filtering on ∆k, the following
equality holds:

U (t) =
∑

1≤|k|≤L

Uk (t) . (14)

Using this decomposition, equation (15) is demonstrated in
[7] based on PNS2L sampling plan (Periodic Nonuniform
Sampling of order 2L [10], [11]).∑

1≤|k|≤L
Uk (t) e−i[γk(t−θ)+ω0t] =

∑
j∈Z

(−1)
j
...

...sinc
[
π

2L (t− θ)− πj
]
U (θ + 2jL) e−iω0(θ+2jL)

γk = π
L

(
k − 1

2 sgn(k)
)
.

(15)

for all real number θ and where sgn(k) = k/ |k|, sinc(x) =
sin(x)/x.

The measured quantities U (tn) appear in the right-hand
side of (15) for j = 0, θ = tn. If L is large enough and



provided that t is in the neighborhood of the observation
interval [t−L, tL], it is possible to neglect the terms for j 6= 0
in the right-hand side of (15) (sinc function converges to 0):∑

1≤|k|≤L
Ûk (t) e−i[γk(t−tn)+ω0t] = ...

...sinc
[
π

2L (t− tn)
]
U (tn) e−iω0tn

(16)

where Ûk(t) is an estimation of Uk(t). Then, for a given
value of t, varying the parameter n over the interval
−L, ...,−1, 1, ..., L, a linear system with 2L equations and
2L unknowns can be obtained. Rather than considering that
the unknowns are the terms (Ûk (t) , 1 ≤ |k| ≤ L) in (16),
it is easier to consider that the unknowns are the terms{
Ûk (t) e−i(γk+ω0)t, 1 ≤ |k| ≤ L

}
so that the matrix M to be

inverted does not depend on time t (only one inversion has to
be performed as time is varying):

Mx(t) = b(t) (17)

with

M =

 eiγ−Lt−L ... eiγLt−L

...
. . .

...
eiγ−LtL ... eiγLtL

 ,

x(t) =


Û−L(t)e

−i(γ−L+ω0)t

...
ÛL(t)e

−i(γL++ω0)t


and

b(t) =


sinc

[
π
2L

(t− t−L)
]
U (t−L) e

−iω0t−L

...
sinc

[
π
2L

(t− tL)
]
U (tL) e

−iω0tL


it is worth noting that matrix M depends only on non

uniform time instants tn. Once matrix M−1 is known (this
inversion is required only one time because the matrix is
independent of t), we can express each Ûk(t) as a linear com-
bination of observations U(tn), n ∈ {−L, ...,−1}∪ {1, ..., L}
using (17), allowing to express also U(t) as a linear combi-
nation of observations U(tn) using (14), allowing to compute
coefficients αn(t) in (8).

III. SIMULATION RESULTS

The signal considered for simulations is a Binary Phase-
Shift Keying (BPSK) telecommunication signal whose base-
band representation Zb(t) is built by filtering a pulse train
(Diracs separated by a symbol period T with random equiprob-
able sign ±1) by a RCF (Raised Cosine Filter) with cut-off
frequency R = 1

T (corresponding to the symbol rate) and roll-
of factor β = 0.25 (18).

H(ω) =
T, |ω| ≤ π(1−β)

T
T
2

[
1 + cos

(
T
2β

[
|ω| − π(1−β)

T

])]
, π(1−β)

T
< |ω| ≤ π(1+β)

T

0, otherwise
(18)

Here, we assume that signal Z(t) = Zb(t)e
iω0t is available

in IF (Intermediate Frequency): interval ∆ is centered around
a carrier frequency corresponding to pulsation ω0 = 1.6 ×
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Fig. 1. Real part of the analyzed signal in IF.

2πR. We choose empirically R = 1 Hz and we sample this
signal at the minimum possible average sampling frequency
fs = (1 + β)R (total band of the signal), retaining 2L = 120
samples. We assume that samples of Z(t) are collected after an
imperfect (low-cost) sampling device introducing voluntarily
very high jitter (100%): we observe Z(t) at time instants

tn = nTs + θ, n ∈ {−L, ...,−1} ∪ {1, ..., L} (19)

where Ts = 1
fs

is the average sampling period and θ is
uniformly distributed between −Ts

2 and Ts

2 . The analog signal
analyzed in these simulations is depicted in figure 1 and
considered nonuniform sampling instants are marked with
stars (only the real part of the signal is plotted).

The impulse response of the sampling device is also im-
perfect. In this example, we address two different sampling
shapes (with unit area){

R: Rectangular g (t) = 1
2ε , |t| < ε

G: Gaussian g (t) = 1
ε
√

2π
exp

[
−t2/2ε2

] (20)

corresponding to complex gains{
R: Rectangular G (ω) = sinc (εω)

G: Gaussian G (ω) = exp
(
−ε2ω2

) (21)

where sincx = sin x
x . Those two cases are examples of

approximation models of real sampling devices. In the first
case, the value of ε has to be such that G (ω) has no zero into
∆, the spectral support of Z(t).

For the cases Rectangular (R) and Gaussian (G), (11) yields
for a white noise with sZ (ω) = 1

2π , ω ∈ [−π, π]

σ2
R = 1

2π

ω0+π∫
ω0−π

(1− sinc (εω))
2
dω

σ2
G = 1

2π

ω0+π∫
ω0−π

(
1− exp

(
−ε2ω2

))2
dω

(22)

IF sampling receivers (violating Nyquist criteria) can be found
on the market [12]. For this kind of devices, Signal to Noise
Ratio (SNR) is known to decrease when the frequency of the
input analog signal increases. It is likely to be due to the
lowpass behavior of the sampler: as can be seen in (22) in the
particular case of a white noise: σ2

R and σ2
G increase as ω0

increases.
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Fig. 3. Real part of signal reconstructed with filtered samples using PNS2L
classical formula (16).

In this example, ε = 0.221 s for both rectangular (R)
sampler and Gaussian (G) sampler. The spectrum of Z(t)
and the 2 transmittances (R and G) representing the assumed
shapes of the sampler are depicted figure 2.

Because of this non ideal sampling shape, reconstructed
signal is attenuated (and distorted) if we try to reconstruct
it directly using (16) from filtered samples coming from the
signal in IF (figure 3). Note that the distortion would have
been much lower if we had tried to sample the baseband signal
rather then the IF one.

But if we make use of corrected formulas taking into
account the shape of the sampler using (10), the reconstruction
of the IF signal is almost perfect as can be seen figure 4 (all
curves are superimposed). It is then very simple to retrieve
undistorted BPSK symbols (at 1 sample by symbol) if needed.

IV. CONCLUSION

To summarize, we assumed that the sampling process is
defined by two main components: a sequence t = {tn, n ∈ Z}
of real numbers, and a regular function g (t) such that the
convolution product [g ∗ Z] (tn) defines observed data (instead
of perfect sampling Z (tn) = [δ ∗ Z] (tn) where δ is the Dirac
distribution). More precisely, we observe distorted samples
U (tn) where U = G [Z] is the output of the LIF with input Z,
impulse response g (t) and complex gain G (ω). The inverse
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Fig. 4. Real part of signal reconstructed with filtered samples using PNS2L
corrected formula (10).

filter G−1 is defined by its complex gain G−1 (ω) (on the
frequency interval ∆ corresponding to the spectral support of
process Z) and its impulse response g−1 (t). As soon as we
have a sampling formula for U fitted to the data U (tn) (as for
instance (16)), we have also a sampling formula for Z fitted to
the data U (tn), defined by (10). Finally, we also derived the
expression of the error obtained by taking U (t) as estimation
of Z (t) (equation (11)).

An example of a telecommunication signal in IF is studied
with an arbitrary underlying sampling sequence t (actually
periodic with any jitter), with two examples of shape func-
tions g (t) (Rectangular or Gaussian). Results demonstrate the
ability to save hardware complexity needed to down-convert
the IF signal into baseband (2 mixers and one filter) by adding
moderate software complexity (only one matrix inversion is
needed). REFERENCES
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