MANUSCRIPT SUBMISSION TO IEEE TRANSACTIONS ON GEOSCIENCEN® REMOTE SENSING 1

New CO, Concentration Predictions and Spectral
Estimation Applied to the Vostok Ice Core

David Bonacci and Bernard Lacaze

Abstract— The Vostok ice core provides measurements of * Raw data
the CO, concentration during the last 414 x 10% yr (year). 300 - — - Reconstructed
Estimations of power spectra show peaks, with the strongesine
corresponding to a time period of around 100 x 10* yr. In this
paper, a new reconstruction method from irregular sampling is
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used, allowing more accurate estimation of spectral peaks his .§ = - *§ /
method intrinsically decomposes the analyzed signal as a su g 40!t * ; 4 i el jf
of sines, providing amplitudes but also phases measuremenbf o gy ‘ *% &JF . %*;; %ﬁ
periodic tendencies (due to the nature of the studied phenoema). § 220t | 4 "ff Jf *,' 1 \ﬁ Jf
This decomposition can be conducted with noisy and inaccuta o Le \H PR ¢ * ig T ;f 46
measurements of the sampling instants and the concentratis. o 200 | \,”U% ,4;{135 # * ‘;f
The widely used Vostok data was chosen as an example but the O ﬁﬁ % *
method could also be applied to data from other places (e.g. 1801 *
dome C, Antarctica) or to study other phenomena as nitrogen :
i ; 18 h 0 1 2 3 4
dioxide NO., methane _Cl-h,20xygen isotope "0 (closely linked Time (years) 10°
to temperature), deuterium “H or dust concentrations. X
Index Terms—Ice, Signal sampling, Signal reconstruction, Fig. 1. Reconstructed and raw Vostok ice core data.
Spectral analysis, Prediction methods.
| INTRODUCTION by authors like Scargle [8]. An interesting classificatioh o

spectral analysis methods for nonuniform data based on the

HE Vostok ice core provides information for the espimasamp|ing pattern, signal model and type of spectrum can be

tion of CO, time variations during the lasti4 x 10° found in [3]. A more recent reference summarizes state-of-
yr (years). The ice core was a thickness larger than thrgf-art methods linked to the study of ice core data [9]. Note
kilometers above a deep lake in Antarctica [1], [2]. Thehat hyperspectral techniques [10] [11] could be intengstor
observations are summarized by 283 measurements of thig problem. However, they would require several data sets
CO, concentration at irregular time instants estimated froggne for each considered spectral band) as they make use of
the depth of the samples (in this paper, only the first 288 perspectral sensors. In this work (Vostok ice core) we onl
values are used due to the necessity of an even numbemhgafe one (irregularly sampled) data set (provided by aisalys

measurements inherent to the proposed method). Note thatdhair bubbles in ice carrots), making the use of hyperspéctr
raw data and sampling instants are noisy. Moreover, a perioased techniques less appropriate.

component is visible with a period of arourid0 x 10° yr.  This paper investigates a reconstruction method based on
Classical spectrum estimation me_thods confirm this spectfgeoretical results coming from previous papers [12], [13]
peak around frequencl0=° yr—* with a secondary spectralThese previous works were dealing with signal reconsmacti
peak around.5 x 10=* yr—* and other smaller ones [3]. Itis\yith a low number of irregular samples. Here, the increased
worth noting that the stationarity of the studied phenom’enanu,mJer of data allows us to get a more accurate spectral

a necessary condition to make use of these spectral esimafistimator and to reconstruct the spectral peaks of the Kosto
techniques (and that the obtained results encourage tigétyal jce core as separated components with phase information,

of this assumption). The used data set is depicted in Figgfowing signal prediction outside the observation in&rv
together with a reconstruction using the method of Section s original method allows us to reconstruct not only the

irregularly sampled process, but also the process filteridd w
The literature on spectral estimation for irregularly s&dp jeal bandpass filters whose bandwidth is a multiple 4L
data is rich. Recent publications include papers by Selya [dyhere 21 is the number of samples). This reconstruction
and Eldar [5] for multiband signals, and by Aldroubi foris possible provided the average sampling rate satisfies the
compressive sampling, data smoothing and interpolation Riyquist condition. As a consequence, it is possible to track
cubic splines [6], [7]. Spectral estimation (spectrum etile  gpectral peaks by defining these bandpass filters. Moreover,
Fourier transform of the autocorrelation function assetla wnen 7, is large enough, the filtering operation provides a
with CO, concentration time variations) has been studieghysoid whose amplitude and phase can be easily estimated.
_ o , L The amplitude provides the peak power whereas the phase
23{{21‘;?”?;‘3:%23;53;‘? ? °§§3,‘2’V§r’;‘a;}édg“'%ﬁ;’?ﬁ%%g’&f;ﬂ, defines the natural tendency of the studied phenomenon at the
France. Tel: +33 561 247381 origin (present days) and in the future, under the statipnar
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hypothesis (not taking into account anthropogenic fagtors with oy, = ¢ [2k — sgr(k)], for any real numbeé and where

The paper is organized as follows. Section Il introduces tlsgnk) = k/ |k|, sindx) = sin(z) /2. Note that the measured
reconstruction formulas used in this work. The applicabén quantities Z (¢;) appear in the right-hand side of (6) for
these formulas to the analysis of the Vostok ice core is studin = 0,0 = t;. If L/a is large enough and provided that
in Section lll. The way of predicting sinusoidal componentis in the neighborhood of the observation interfaal;,,¢,],
from the filtered CQ@ concentration signal versus time ist is possible to neglect the terms associated witk 0 in
also presented. Conclusions and future works are repamntedhe right-hand side of (6) (the sinc function converge®)o
Section V. leading to

—i2moy (t—t;) —qj ﬂ _ £ i| . .
II. PROPOSED SPECTRAL ESTIMATION <zk|:<LZk(ﬁ)e smc{ L (8 =;)| Z(t;) +75()
1<|k|<

In this section, we show how time reconstruction and spec- )
tral estimation can be performed using irregular samples ofvhere the residue; (¢) is defined as
wide sense stationary random process. These reconstructio

. L
and spectral estimation are obtained by defining an ideat;(t) = Z (—1)" smc[% (t—0)— ﬂn} Z (9 + n—) )
filterbank, having as many subbands as samples (see Appendix nez* a
for mathematical details). (8)

In order to solve (7), it is easier reparametrize the proldsra
A Time reconstruction function of the variableg;, (t) e =7t 1 < |k| < L. This re-
- [IMme reconstructio parameterization allows (7) to be rewritten in matrix forsn b

A sequence of measurements of a (zero-mean) stationggyying the parametej over the interval-L, ..., —1,1,..., L
processZ = {Z(t),t € R} is considered. More precisely,(for a given value of)

Z(t) is observed at irregular sampling instants

Mz(t) = b(t) +r(t) 9)
t={tg,ke{-L,...,—1}U{1,...,L}}. with o o
The power spectral density; (f) of this stationary process S
(assumed to be band limited with supppta, a]) is defined M = : . .
as [14] €i27ra,LtL ei2marty
“ 27L(t)6712wa,Lt
EZ02 (- = [ S (nd @ o) - | :
—a Z\L(t)efiQW(th
where H.] and the superscript stand for mathematical ex- il (1 ¢ 20
pectation (or ensemble mean) and complex conjugate. .5' c[F(t—t-r)]Z( L) .7'—L(t)
The bandpass of is divided into 2L frequency bands °®) = | : ()= |
Ay, 1< |k| < L defined as sinc[ % (t —tr)] Z (t) rL(t)
(k—1)a/L,ka/L[,k > 1 The least squares (LS) estimatoragft) can then obtained by
Ak — ) ) jl . (2) e 2 | d t
lka/L,(k+1)a/L] k< —1 minimizing <\Z|:<LTJ (t) leading to
1<]4]<
The intervalsA;, define a partition of—a, a] in 2L intervals Z(t) = M~'b(t). (10)

of length a/L. We denote asZ, = {Z;(t),t € R} the o .
signal Z(t) filtered by an ideal bandpass filter with frequentidt is important to note that the matriR/ (that needs to be

SUppPOrtAyg, i.e., inverted) does not depend onAs a consequence, this matrix
only needs to be inverted once. After (10) has been solved,
Zi(t) = Z(t) * h(t) ®) estimations o7, (¢) (denoted agy, (t) ) and ofZ (t) (denoted
with as Z (t) can be easily obtain using (5).
Hi(f) = TR ()] = Ia, (f) (4) Remarks: the matriM can be ill-conditioned (mainly for

) ] ) o large values ofL) depending on the irregularity of the time
where TF is the Fourier transform and,, is the indicator jnstants. For instance, Fig. 2 shows the eigenvaluesfofor
function on the intervalA,. The signalZ(t) can then be the \ostok ice core data. Many eigenvalues are very low so

decomposed as that the condition number (ratio between the larger andlsmal
Z(t) = Z Zi (t). (5) e|genvalues) is very large, leading tq num_erlcal |r_1$taed|
\<IR<L To avoid numerical problems for the inversion d, its low

. . . . . rank approximation is performed before its inversion [TTHe
Using this decomposition, Section V (appendix) shows thany, of M is estimated considering only eigenvalues having
following result based on a periodic nonuniform sampling yajye greater than one hundredth of the largest one. Note

(PNS) of order2L [15], [16]) that small variations around the estimated rank 93 do not
S Zy () e tmon(t=0) = affect significantly the reconstruction of the signa(t) nor
1<|k|<L (6) its spectral estimation. Denote as

—1)"sinc[ze (+ — 0) — nL
D sinc[%2 (t —0) —n] Z (0 + &) M =USVT e R2Lx2L (11)
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Fig. 2. Sorted eigenvalues of the linear system correspgntti the (non Fig. 3. Sampling instants repartition
uniform) time samples

non constant amplitude varying slowly). For a real procéss
sz (f) is even allowing the sums

Zi (t) + Z_k (1)

to be considered (instead dfj; (¢) only). These sums will
be assumed to be real sinusoids.Afis the amplitude of
one of these sinusoids at frequengy the power of the two
spectral peaks at-f, is A?/4 for each of them. Note that
the phase of this sinusoid, defining the position of the sine

the singular value decomposition @& and partitionU, 3
andV as follows

3; O

U[Ule],E[ o %,

:| R andV = [V1V2] (12)
where the diagonal matriXi; isp xp, Uy is 2L xp andV; is
2L x p. Then the matrix, obtained from the truncated singul
value decomposition

M=U VT (13) component versus time, is an information that is not avéglab
. ) L . with all spectral estimation methods [3], [18]. Here thigrax
is the matrix of ranky minimizing the Frobenius norfiM — information given by the proposed method is exploited to
M| . A robust estimator of the inverse off is then defined provide a prediction of the atmospheric €@oncentration in
as o the future. In the following section, this estimation foriau
M =wz'U" (14) is exploited to provide an analysis of the Vostok ice core

data. The phase of the spectral components (provided by the
proposed method) is used to perform prediction of the signal

B. Spectral estimation behavior, which could for instance give clues in order tottry
The power ofZ(t) in the frequency band\, (defined in @ssess the predominance of the anthropic factor in the ima
(2)) is evolution.
2
Pa,=E ['Z’“ ®)] } - /Ak sz (f)df (15) I1l. RESULTS ABOUTVOSTOK ICE CORE DATA

A. Data description

The Vostok ice core data for carbon dioxide is composed of
2 a sequence of measurements of atmospheric concentrafions o
CO; (in ppmv: parts per million by volume) acquired in the
past. It is observed during the last4 x 10* yr at irregular

which can be estimated by standard estimators such as

1L s
NZ‘Zk (TLTS)
n=1

whereT; is a suitable sampling period. sampling instants;,. The unit for time is the year (yr), where
A peak in P, at frequencyf, corresponds to a large present corresponds tp = 0, past is fort;, > 0 and future for
amount of signal power concentratedfat In this case t, < 0. A sequence of 283 measuremeftgt;,) is provided,
sz (fo) = 028 (fo) among which2 L = 282 are used going from 0 té11 x 10° yr.

Fig. 3 shows the sequence of time instantas a function of
where§ (f) is the Dirac delta function and? is the weight the timet to show how the curve is departing from the regular
of the power peak. Actually, widened peaks (covering a set séimpling case (that would correspond to a straight line).
several frequency bands containing a larger amount of powerIn addition to CQ concentrationst, values can be also
are observed in the Vostok ice core data. This is a relatiestimated thanks to carbon isotopes dating measurements. |
notion: whenL is large, peaks have a power distributed ois difficult to quantify the estimation error of, especially
more intervalsA;. Moreover, as the width of the frequencybecause air bubbles and surrounding ice can have different
bands decreases/; (t) appears as a monochromatic waveges. The average sampling time for these measurements is
with a weaker amplitude modulation (this can be viewed aslat5 x 102 yr whereas the minimum and maximum time
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Fig. 4. Difference between reconstructed and raw data aplgagninstants

for L = 141 (noise) Fig. 5. Noise spectrum

150 : : : : :

intervals are 44 and 5996 yr (which corresponds to highly ——Power of subband signals

irregular sampling). This section considers the formulés o ——~ Periodogram of reconstructed signal

Section Il to compute temporal and spectral properties of f

the data, and to obtain predictions about the behavior of the 100

concentration in the future. Note that this analysis assume

that Z(t) is a stationary random process, which should be

validated by specialists. 50t
Figs. 14 and 15 of [3] provide the power spectral density P

obtained using results from a review of state-of-the-agtsal /

estimators adapted to nonuniformly sampled data such as the

Vostok data. Those figures show that the power spectrum 00 1 5 3 4 ”‘“5 6 7

density of the procesg (i.e.,sz(f)) is very weak (negligible) Frequency (cycles/year) 445

for frequency valueg > 7x10~° yr~! (this value is common

to all spectral estimators)_ The frequem;yjefining the power Fig. 6. Spectral power estimator obtained with= 141 individual subband

spectral density support can then be chosen greater Ormqué"gnalls and classical periodogram of the reconstructedabigith 10,000

this value. Our results were obtained using: 10~* yr=! to samples

make sure that there is no power in the spectrum &fter0—>

yr—1, in order to avoid any aliasing.

Amplitude

results were obtained for different signal models (nonmeta

ric or parametric), different sampling pattern for the sign

B. Sgnal reconstruction of interest (discrete or continuous). These methods were
The purpose of the signal reconstruction is to estingate) ~ classified into4 broad categories: methods based on least

(CO;, concentration) at some given timein the observation Sduares (LS), interpolation techniques or slotted resagpl

interval [t_y,t;]. Fig. 1 shows the reconstruction ¢ (1) ~and methods based on continuous time models.

in the interval of measurement[®,411 > 103] yr whereas The Vostok ice core C®concentration data studied in this

the difference between the actual data and its reconstructPaper is characterized by a nonparametric signal model, a

is displayed in Fig. 4. The spectrum of this error, depicteg®MPpling pattern involving arbitrary irregular samplingo(

in Fig. 5, shows that this difference may be considered 88ly missing data) and a discrete spectrum. As a consequence

measurement noise (noisy flat spectrum). These results wepéy the first 3 categories of methods studied in [3] can be

obtained by solving (10) with a low rank approximation. ~ used. Moreover, due to large gaps between sampling instants
methods based on slotted resampling cannot be applied or
o simply fail to locate any peak in the spectrum [3]. For these
C. Spectral estimation reasons, a technical comparison is provided in this seotitn
The estimated power spectrum B{¢) is displayed in Fig. with methods based on LS and on interpolation technigues.
6. It is a function of the frequency expressed in yr' Results with methods based on LS are presented in Fig. 7.
(or cyles/yr). Each cross corresponds to the power in tiiéiese methods consist in estimating the spectral parasneter
considered frequency band versus its central frequér(tytal at each considered frequency through an LS minimization
of 282 crosses). The width of each frequency subband imolving known irregular samples (note that details on the
a/L = % ~T7.5x 1077 yr Schuster periodogram can be found in [3], on the Lomb-
For comparison purposes, the results of [3] (obtained witcargle in [8] and and on the iterative adaptive approachA)IA
the same Vostok data) are reproduced in this paper. Thésg19]).
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Fig. 7. Spectrum based on LS methods [3] parametric uniform sampling spectral estimation methdsripdogram and
Capon) [3]
TABLE |

FUNDAMENTAL AND HARMONIC PEAKS D. Sgnal prediction (extrapolation)

Frequency Subbands Power The principle of signal prediction is explained in Fig. 9.
fi=1010"6yr=t 1215 P =0.410 This figure shows the subband signals componéftg) in
f2=15.10"6 yr! 2022 PY =0.059 subbands 3, 9, 10, 12, 13 and 14 (added to subbands -3, -9, -10,
f3 =25.10-6 yr—1 3236 P =0.073 -12,-13 and -14 to obtain real signals). They are quasi g&rio
fa=3510"6 yr—! 45-48 PO =0.034 functions (quasi pure sinusoids) because subbands hawswnar
fs = 45.1076 yr—1 59-61 PP =0.011 bandwidth. Thanks to these components corresponding to
fo = 55.1076 yr—1 7376 PO = (.020 the first 3 spectral peaks of Fig. 6 (low pass components),

f : )
° extrapolations are computed thanks to a Fourier Transform t

predict future CQ concentrations (dashed left parts of curves

] ) . . for t < 0). In the same way as for reconstruction (consisting

Spectral_estl_mators based on interpolation techniques #€summing all subband signals (5)), signal prediction can

presented in Fig. 8, also reproduced from the results of [§e gptained by summing these sine extrapolations. When the

These estimators were obtained by applying spectral estimgy frequency subbands are used for the prediction, a figeri

tion methods adapted to uniform sampling, i.e., Periodogra,peration is also performed. The proposed prediction sehem
and Capon estimators applied to covariance (or autocorgss yalidated to predict the G@oncentration during the last
lation) interpolation results with sinc kernels. Compated 5. (3 yr using only data for > 50 x 10% yr. Results are

previous spectral estimations (LS methods, methods basfghied Fig. 10 where we can see that the predictions are very
on interpolation techniques), the proposed method (power 9yse to the true data.

filtered signal in each subband) produces a cleaner estimato|, 5 second experiment, considering again all available

It highlights a widened main spectral peak aroyfid= 10" sampjes; thanks to extrapolations of the 6 components of Fig
yr=! in subbands: = 12_, 13,14,15. By normqhzmg the total g (subbands 3, 9, 10, 12, 13 and 14) corresponding to low-
power to 1, and denoting aB), the power in subbantk| fequency spectral peaks, a first filtered prediction ofsCO
(positive and negative subbands), the following resultslia qncentration in the atmosphere can be done for the next
obtained 50 x 103 yr. As can be seen in Fig. 11, the ¢@oncentration
should decrease duriri§) x 103 yr (without taking into account
P =0.050,P3 = 0.13,P14 = 0.15, P15 = 0.077. human activities). The same prediction can also be donedaki
into account more components than just the main peak. Fig. 12
. ¢ shows the same extrapolation using components of the 8 main
e o ous i ppta e SPectel peaks o he 6 peas of Tabe | eaing o
SP P P . pp ngne interpretation (decrease of £€»ncentration during the
frequenciesfs to fg in sets of subbands and with total powerﬁext 50 x 10° yr)
P‘f"jt given in Table I. Thesé spectral peaks contain 60.7% o '
the total power. They are harmonics of a single fundamental
signal component at frequengy = 5x 106 yr=! (harmonics IV. CONCLUSION
2,3,5,7,9and 11) with very low powe‘f’(foot = 0.0073). Two The CQ concentration curve of the padill x 103 yr
others spectral peaks appear at frequerities10~¢ yr—t and from the Vostok ice core record exhibits periodic composent
7.5 x 1079 yr=! with respective powers 0.0780 and 0.0680n the presence of noise. Though the spectral noise content
Note that these spectral components were not detected.in Bems richer in recent past, the stationarity hypothesisires
They correspond to a very slow trend of €@oncentration necessary as it is required for extracting Fourier comptamen
and have no impact on prediction in the négtx 103 yr. The proposed estimation method can be used to predict



MANUSCRIPT SUBMISSION TO IEEE TRANSACTIONS ON GEOSCIENCEN® REMOTE SENSING 6

0 1 2 3
Time (years)
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Fig. 10. True data and de-noised/predicted concentratioimgllast50 x 103
yr using subbands corresponding to the first 3 low-frequeyeaks and only

samples older thafi0 x 103 yr
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Fig. 12. Reconstructed GO concentration using all subbands, de-
noised/predicted using subbands corresponding to the 8 spactral peaks
visible in Fig. 6 and de-noised/predicted using subbandsponding to the
6 peaks of Table |

hypothetical tendencies of the G@oncentration in the future
(and then temperature) if human activities do not destriy th
stationarity hypothesis.

Many procedures are available to extract the amplitudes of
the spectral peaks, mainly based on estimations of coioelat
functions and power spectra [3], [18]. In this paper, a new
reconstruction method giving access to individual filteceth-
ponents was applied, giving the amplitude and phase of each
spectral component (and of partial sums). The width of the
spectral peaks was found to be not negligible. Among passibl
reasons, we can mention a deviation from the stationarity
assumption, the finite length of measurements, some errors
in the determination of the sampling instants and of the, CO
concentrations.

V. APPENDIX

Let us assume that spectral density (f) of U (¢) has a
bounded support

su(f)=0,f¢[a, 0]
The FSE (Fourier Series Expansion)«3f™/* on [, f] is

Q2imft _ Z e (£) €2 7L (16)
nez
with 5
Cn (t) = B+a f62i71'fte—2i7r ﬁT:f“ df =
(o7

(17)
eiw[(5+(x)(t—ﬁ+a)]sinm [(5 N a) . n] .
The FSE in (16) also leads to
e2im f(t+6) S e () €2i7rf[0+ﬁ]
nez

2mIt = S ¢ (t— 6) o2inf [0+ 7t ]
nez

Reconstructed GOconcentration using all subbands and deimplying the sampling formula
noised/predicted using subbands corresponding to the3fitstv-frequency

U(t):ch(t—H)U(H—i— 1 ) (18)

neZ ﬂ o
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WhenU (t) is replaced byZ;(t) with
a=(k—-1)a/L,=ka/L k>0
a=ka/L,f=(k+1)a/L, k<0

theng—a = a/L and the following set of formulas is obtained
from (17) and (18)

Zi(t) = X cun (t—0) Zy, (0 + 2L)

neZ
e k=D 7 (1) = YD (~1)"siner [£ (t — 6) — n]
Zp (0+2L) k> 1
e 7 (1) = 32 (—1)"siner [ (¢ — §) — n]

Using (5), summation ovel of the previous equations leads
to

S e—iwa(%—sgrk)%zk (t) =
1<[k|<L (19)
S (=1)"siner [£ (t —0) —n] Z (6 + &)
nez
where sgifk) = 1 whenk > 1 and —1 for k£ < —1, resulting
in the expression in (6).
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