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New CO2 Concentration Predictions and Spectral
Estimation Applied to the Vostok Ice Core

David Bonacci and Bernard Lacaze

Abstract— The Vostok ice core provides measurements of
the CO2 concentration during the last 414 × 10

3 yr (year).
Estimations of power spectra show peaks, with the strongestone
corresponding to a time period of around 100 × 10

3 yr. In this
paper, a new reconstruction method from irregular sampling is
used, allowing more accurate estimation of spectral peaks.This
method intrinsically decomposes the analyzed signal as a sum
of sines, providing amplitudes but also phases measurements of
periodic tendencies (due to the nature of the studied phenomena).
This decomposition can be conducted with noisy and inaccurate
measurements of the sampling instants and the concentrations.
The widely used Vostok data was chosen as an example but the
method could also be applied to data from other places (e.g.
dome C, Antarctica) or to study other phenomena as nitrogen
dioxide NO2, methane CH4, oxygen isotope18O (closely linked
to temperature), deuterium 2H or dust concentrations.

Index Terms— Ice, Signal sampling, Signal reconstruction,
Spectral analysis, Prediction methods.

I. I NTRODUCTION

T HE Vostok ice core provides information for the estima-
tion of CO2 time variations during the last414 × 103

yr (years). The ice core was a thickness larger than three
kilometers above a deep lake in Antarctica [1], [2]. The
observations are summarized by 283 measurements of the
CO2 concentration at irregular time instants estimated from
the depth of the samples (in this paper, only the first 282
values are used due to the necessity of an even number of
measurements inherent to the proposed method). Note that the
raw data and sampling instants are noisy. Moreover, a periodic
component is visible with a period of around100 × 103 yr.
Classical spectrum estimation methods confirm this spectral
peak around frequency10−5 yr−1 with a secondary spectral
peak around2.5× 10−5 yr−1 and other smaller ones [3]. It is
worth noting that the stationarity of the studied phenomenais
a necessary condition to make use of these spectral estimation
techniques (and that the obtained results encourage the validity
of this assumption). The used data set is depicted in Fig. 1
together with a reconstruction using the method of Section II.

The literature on spectral estimation for irregularly sampled
data is rich. Recent publications include papers by Selva [4]
and Eldar [5] for multiband signals, and by Aldroubi for
compressive sampling, data smoothing and interpolation by
cubic splines [6], [7]. Spectral estimation (spectrum being the
Fourier transform of the autocorrelation function associated
with CO2 concentration time variations) has been studied
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Fig. 1. Reconstructed and raw Vostok ice core data.

by authors like Scargle [8]. An interesting classification of
spectral analysis methods for nonuniform data based on the
sampling pattern, signal model and type of spectrum can be
found in [3]. A more recent reference summarizes state-of-
the-art methods linked to the study of ice core data [9]. Note
that hyperspectral techniques [10] [11] could be interesting for
this problem. However, they would require several data sets
(one for each considered spectral band) as they make use of
hyperspectral sensors. In this work (Vostok ice core) we only
have one (irregularly sampled) data set (provided by analysis
of air bubbles in ice carrots), making the use of hyperspectral-
based techniques less appropriate.

This paper investigates a reconstruction method based on
theoretical results coming from previous papers [12], [13].
These previous works were dealing with signal reconstruction
with a low number of irregular samples. Here, the increased
number of data allows us to get a more accurate spectral
estimator and to reconstruct the spectral peaks of the Vostok
ice core as separated components with phase information,
allowing signal prediction outside the observation interval.
This original method allows us to reconstruct not only the
irregularly sampled process, but also the process filtered with
ideal bandpass filters whose bandwidth is a multiple of1/2L
(where 2L is the number of samples). This reconstruction
is possible provided the average sampling rate satisfies the
Nyquist condition. As a consequence, it is possible to track
spectral peaks by defining these bandpass filters. Moreover,
when L is large enough, the filtering operation provides a
sinusoid whose amplitude and phase can be easily estimated.
The amplitude provides the peak power whereas the phase
defines the natural tendency of the studied phenomenon at the
origin (present days) and in the future, under the stationarity
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hypothesis (not taking into account anthropogenic factors).
The paper is organized as follows. Section II introduces the

reconstruction formulas used in this work. The applicationof
these formulas to the analysis of the Vostok ice core is studied
in Section III. The way of predicting sinusoidal components
from the filtered CO2 concentration signal versus time is
also presented. Conclusions and future works are reported in
Section IV.

II. PROPOSED SPECTRAL ESTIMATION

In this section, we show how time reconstruction and spec-
tral estimation can be performed using irregular samples ofa
wide sense stationary random process. These reconstruction
and spectral estimation are obtained by defining an ideal
filterbank, having as many subbands as samples (see Appendix
for mathematical details).

A. Time reconstruction

A sequence of measurements of a (zero-mean) stationary
processZ = {Z (t) , t ∈ R} is considered. More precisely,
Z(t) is observed at irregular sampling instants

t = {tk, k ∈ {−L, ...,−1} ∪ {1, ..., L}} .

The power spectral densitysZ (f) of this stationary processZ
(assumed to be band limited with support[−a, a]) is defined
as [14]

E [Z (t)Z∗ (t− τ)] =

∫ a

−a

e2iπfτsZ (f)df (1)

where E[.] and the superscript∗ stand for mathematical ex-
pectation (or ensemble mean) and complex conjugate.

The bandpass ofZ is divided into 2L frequency bands
∆k, 1 ≤ |k| ≤ L defined as

∆k =

{
[(k − 1) a/L, ka/L[ , k ≥ 1
]ka/L, (k + 1)a/L] , k ≤ −1

. (2)

The intervals∆k define a partition of[−a, a] in 2L intervals
of length a/L. We denote asZk = {Zk (t) , t ∈ R} the
signalZ(t) filtered by an ideal bandpass filter with frequential
support∆k, i.e.,

Zk(t) = Z(t) ∗ hk(t) (3)

with
Hk(f) = TF [hk(t)] = I∆k

(f) (4)

where TF is the Fourier transform andI∆k
is the indicator

function on the interval∆k. The signalZ(t) can then be
decomposed as

Z (t) =
∑

1≤|k|≤L

Zk (t) . (5)

Using this decomposition, Section V (appendix) shows the
following result based on a periodic nonuniform sampling
(PNS) of order2L [15], [16])

∑
1≤|k|≤L

Zk (t) e
−iπαk(t−θ) =

∑
n∈Z

(−1)
n sinc

[
πa
L

(t− θ)− πn
]
Z
(
θ + nL

a

) (6)

with αk = a
L
[2k − sgn(k)], for any real numberθ and where

sgn(k) = k/ |k|, sinc(x) = sin(x)/x. Note that the measured
quantitiesZ (tj) appear in the right-hand side of (6) for
n = 0, θ = tj . If L/a is large enough and provided thatt
is in the neighborhood of the observation interval[t−L, tL],
it is possible to neglect the terms associated withn 6= 0 in
the right-hand side of (6) (the sinc function converges to0),
leading to
∑

1≤|k|≤L

Zk(t)e
−i2παk(t−tj) = sinc

[πa
L

(t− tj)
]
Z(tj)+ rj(t)

(7)
where the residuerj(t) is defined as

rj(t) =
∑

n∈Z∗

(−1)n sinc
[πa
L

(t− θ)− πn
]
Z

(
θ +

nL

a

)
.

(8)
In order to solve (7), it is easier reparametrize the problemas a
function of the variablesZk (t) e

−i2παkt, 1 ≤ |k| ≤ L. This re-
parameterization allows (7) to be rewritten in matrix form by
varying the parameterj over the interval−L, ...,−1, 1, ..., L
(for a given value oft)

Mx(t) = b(t)+ r(t) (9)

with

M =





ei2πα
−Lt

−L ... ei2παLt
−L

...
. . .

...
ei2πα

−LtL ... ei2παLtL





x(t) =





Ẑ
−L(t)e

−i2πα
−Lt

...
ẐL(t)e

−i2παLt





b(t) =





sinc
[
πa
L

(t− t
−L)

]
Z (t

−L)
...
sinc

[
πa
L

(t− tL)
]
Z (tL)



 , r(t) =





r
−L(t)

...
rL(t)



 .

The least squares (LS) estimator ofx(t) can then obtained by
minimizing

∑
1≤|j|≤L

r2j (t) leading to

x̂(t) = M
−1

b(t). (10)

It is important to note that the matrixM (that needs to be
inverted) does not depend ont. As a consequence, this matrix
only needs to be inverted once. After (10) has been solved,
estimations ofZk (t) (denoted aŝZk (t) ) and ofZ (t) (denoted
as Ẑ (t) can be easily obtain using (5).

Remarks: the matrixM can be ill-conditioned (mainly for
large values ofL) depending on the irregularity of the time
instants. For instance, Fig. 2 shows the eigenvalues ofM for
the Vostok ice core data. Many eigenvalues are very low so
that the condition number (ratio between the larger and smaller
eigenvalues) is very large, leading to numerical instabilities.
To avoid numerical problems for the inversion ofM , its low
rank approximation is performed before its inversion [17].The
rankp of M is estimated considering only eigenvalues having
a value greater than one hundredth of the largest one. Note
that small variations around the estimated rankp = 93 do not
affect significantly the reconstruction of the signalZ(t) nor
its spectral estimation. Denote as

M = UΣV
T ∈ R

2L×2L (11)
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Fig. 2. Sorted eigenvalues of the linear system corresponding to the (non
uniform) time samples

the singular value decomposition ofM and partitionU ,Σ
andV as follows

U = [U1U2] ,Σ =

[
Σ1 0
0 Σ2

]
, andV = [V1V2] (12)

where the diagonal matrixΣ1 is p×p, U1 is 2L×p andV1 is
2L× p. Then the matrix, obtained from the truncated singular
value decomposition

M̂ = U1Σ1V1

T (13)

is the matrix of rankp minimizing the Frobenius norm‖M −

M̂‖F . A robust estimator of the inverse ofM is then defined
as

M̂
−1

= V1Σ1

−1
U1

T . (14)

B. Spectral estimation

The power ofZ(t) in the frequency band∆k (defined in
(2)) is

P∆k
= E

[
|Zk (t)|

2
]
=

∫

∆k

sZ (f) df (15)

which can be estimated by standard estimators such as

1

N

N∑

n=1

∣∣∣Ẑk (nTs)
∣∣∣
2

whereTs is a suitable sampling period.
A peak in P∆k

at frequencyf0 corresponds to a large
amount of signal power concentrated atf0. In this case

sZ (f0) = σ2δ (f0)

whereδ (f) is the Dirac delta function andσ2 is the weight
of the power peak. Actually, widened peaks (covering a set of
several frequency bands containing a larger amount of power)
are observed in the Vostok ice core data. This is a relative
notion: whenL is large, peaks have a power distributed on
more intervals∆k. Moreover, as the width of the frequency
bands decreases,̂Zk (t) appears as a monochromatic wave
with a weaker amplitude modulation (this can be viewed as a
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Fig. 3. Sampling instants repartition

non constant amplitude varying slowly). For a real processZ,
sZ (f) is even allowing the sums

Zk (t) + Z−k (t)

to be considered (instead ofZk (t) only). These sums will
be assumed to be real sinusoids. IfA is the amplitude of
one of these sinusoids at frequencyf0, the power of the two
spectral peaks at±f0 is A2/4 for each of them. Note that
the phase of this sinusoid, defining the position of the sine
component versus time, is an information that is not available
with all spectral estimation methods [3], [18]. Here this extra
information given by the proposed method is exploited to
provide a prediction of the atmospheric CO2 concentration in
the future. In the following section, this estimation formula
is exploited to provide an analysis of the Vostok ice core
data. The phase of the spectral components (provided by the
proposed method) is used to perform prediction of the signal
behavior, which could for instance give clues in order to tryto
assess the predominance of the anthropic factor in the climate
evolution.

III. R ESULTS ABOUT VOSTOK ICE CORE DATA

A. Data description

The Vostok ice core data for carbon dioxide is composed of
a sequence of measurements of atmospheric concentrations of
CO2 (in ppmv: parts per million by volume) acquired in the
past. It is observed during the last414 × 103 yr at irregular
sampling instantstk. The unit for time is the year (yr), where
present corresponds totk = 0, past is fortk > 0 and future for
tk < 0. A sequence of 283 measurementsZ (tk) is provided,
among which2L = 282 are used going from 0 to411×103 yr.
Fig. 3 shows the sequence of time instantstk as a function of
the timet to show how the curve is departing from the regular
sampling case (that would correspond to a straight line).

In addition to CO2 concentrations,tk values can be also
estimated thanks to carbon isotopes dating measurements. It
is difficult to quantify the estimation error oftk especially
because air bubbles and surrounding ice can have different
ages. The average sampling time for these measurements is
1.45 × 103 yr whereas the minimum and maximum time
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Fig. 4. Difference between reconstructed and raw data at sampling instants
for L = 141 (noise)

intervals are 44 and 5996 yr (which corresponds to highly
irregular sampling). This section considers the formulas of
Section II to compute temporal and spectral properties of
the data, and to obtain predictions about the behavior of the
concentration in the future. Note that this analysis assumes
that Z(t) is a stationary random process, which should be
validated by specialists.

Figs. 14 and 15 of [3] provide the power spectral density
obtained using results from a review of state-of-the-art spectral
estimators adapted to nonuniformly sampled data such as the
Vostok data. Those figures show that the power spectrum
density of the processZ (i.e.,sZ(f)) is very weak (negligible)
for frequency valuesf > 7×10−5 yr−1 (this value is common
to all spectral estimators). The frequencya defining the power
spectral density support can then be chosen greater or equalto
this value. Our results were obtained usinga = 10−4 yr−1 to
make sure that there is no power in the spectrum after7×10−5

yr−1, in order to avoid any aliasing.

B. Signal reconstruction

The purpose of the signal reconstruction is to estimateZ (t)
(CO2 concentration) at some given timet in the observation
interval [t−L, tL]. Fig. 1 shows the reconstruction ofZ (t)
in the interval of measurements

[
0, 411× 103

]
yr whereas

the difference between the actual data and its reconstruction
is displayed in Fig. 4. The spectrum of this error, depicted
in Fig. 5, shows that this difference may be considered as
measurement noise (noisy flat spectrum). These results were
obtained by solving (10) with a low rank approximation.

C. Spectral estimation

The estimated power spectrum ofZ(t) is displayed in Fig.
6. It is a function of the frequencyf expressed in yr−1

(or cyles/yr). Each cross corresponds to the power in the
considered frequency band versus its central frequencyf (total
of 282 crosses). The width of each frequency subband is
a/L = 10−4

141 ≈ 7.5× 10−7 yr−1.
For comparison purposes, the results of [3] (obtained with

the same Vostok data) are reproduced in this paper. These
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Fig. 6. Spectral power estimator obtained withL = 141 individual subband
signals and classical periodogram of the reconstructed signal with 10,000
samples

results were obtained for different signal models (nonparamet-
ric or parametric), different sampling pattern for the signal
of interest (discrete or continuous). These methods were
classified into4 broad categories: methods based on least
squares (LS), interpolation techniques or slotted resampling
and methods based on continuous time models.

The Vostok ice core CO2 concentration data studied in this
paper is characterized by a nonparametric signal model, a
sampling pattern involving arbitrary irregular sampling (not
only missing data) and a discrete spectrum. As a consequence,
only the first 3 categories of methods studied in [3] can be
used. Moreover, due to large gaps between sampling instants,
methods based on slotted resampling cannot be applied or
simply fail to locate any peak in the spectrum [3]. For these
reasons, a technical comparison is provided in this sectiononly
with methods based on LS and on interpolation techniques.
Results with methods based on LS are presented in Fig. 7.
These methods consist in estimating the spectral parameters
at each considered frequency through an LS minimization
involving known irregular samples (note that details on the
Schuster periodogram can be found in [3], on the Lomb-
Scargle in [8] and and on the iterative adaptive approach (IAA)
in [19]).
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Fig. 7. Spectrum based on LS methods [3]

TABLE I

FUNDAMENTAL AND HARMONIC PEAKS

Frequency Subbands Power

f1 = 10.10−6 yr−1 12-15 Ptot
f1

= 0.410

f2 = 15.10−6 yr−1 20-22 Ptot
f2

= 0.059

f3 = 25.10−6 yr−1 32-36 Ptot
f3

= 0.073

f4 = 35.10−6 yr−1 45-48 Ptot
f4

= 0.034

f5 = 45.10−6 yr−1 59-61 Ptot
f5

= 0.011

f6 = 55.10−6 yr−1 73-76 Ptot
f6

= 0.020

Spectral estimators based on interpolation techniques are
presented in Fig. 8, also reproduced from the results of [3].
These estimators were obtained by applying spectral estima-
tion methods adapted to uniform sampling, i.e., Periodogram
and Capon estimators applied to covariance (or autocorre-
lation) interpolation results with sinc kernels. Comparedto
previous spectral estimations (LS methods, methods based
on interpolation techniques), the proposed method (power of
filtered signal in each subband) produces a cleaner estimator.
It highlights a widened main spectral peak aroundf1 = 10−5

yr−1, in subbandsk = 12, 13, 14, 15. By normalizing the total
power to 1, and denoting asPk the power in subband|k|
(positive and negative subbands), the following results can be
obtained

P12 = 0.050,P13 = 0.13,P14 = 0.15,P15 = 0.077.

The total power of these peaks is aroundPtot
f1

= 0.41. Other
widened spectral peaks linked to the previous one appear at
frequenciesf2 to f6 in sets of subbands and with total powers
Ptot

fj
given in Table I. These6 spectral peaks contain 60.7% of

the total power. They are harmonics of a single fundamental
signal component at frequencyf0 = 5×10−6 yr−1 (harmonics
2, 3, 5, 7, 9 and 11) with very low power (Ptot

f0
= 0.0073). Two

others spectral peaks appear at frequencies2.5×10−6 yr−1 and
7.5 × 10−6 yr−1 with respective powers 0.0780 and 0.0680.
Note that these spectral components were not detected in [3].
They correspond to a very slow trend of CO2 concentration
and have no impact on prediction in the next50× 103 yr.
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Fig. 8. Spectrum obtained by covariance interpolation and applying non-
parametric uniform sampling spectral estimation methods (Periodogram and
Capon) [3]

D. Signal prediction (extrapolation)

The principle of signal prediction is explained in Fig. 9.
This figure shows the subband signals componentsZk(t) in
subbands 3, 9, 10, 12, 13 and 14 (added to subbands -3, -9, -10,
-12, -13 and -14 to obtain real signals). They are quasi periodic
functions (quasi pure sinusoids) because subbands have narrow
bandwidth. Thanks to these components corresponding to
the first 3 spectral peaks of Fig. 6 (low pass components),
extrapolations are computed thanks to a Fourier Transform to
predict future CO2 concentrations (dashed left parts of curves
for t < 0). In the same way as for reconstruction (consisting
in summing all subband signals (5)), signal prediction can
be obtained by summing these sine extrapolations. When the
low frequency subbands are used for the prediction, a filtering
operation is also performed. The proposed prediction scheme
was validated to predict the CO2 concentration during the last
50× 103 yr using only data fort > 50× 103 yr. Results are
plotted Fig. 10 where we can see that the predictions are very
close to the true data.

In a second experiment, considering again all available
samples, thanks to extrapolations of the 6 components of Fig.
9 (subbands 3, 9, 10, 12, 13 and 14) corresponding to low-
frequency spectral peaks, a first filtered prediction of CO2

concentration in the atmosphere can be done for the next
50×103 yr. As can be seen in Fig. 11, the CO2 concentration
should decrease during50×103 yr (without taking into account
human activities). The same prediction can also be done taking
into account more components than just the main peak. Fig. 12
shows the same extrapolation using components of the 8 main
visible spectral peaks or the 6 peaks of Table I, leading to the
same interpretation (decrease of CO2 concentration during the
next 50× 103 yr).

IV. CONCLUSION

The CO2 concentration curve of the past411 × 103 yr
from the Vostok ice core record exhibits periodic components
in the presence of noise. Though the spectral noise content
seems richer in recent past, the stationarity hypothesis remains
necessary as it is required for extracting Fourier components.
The proposed estimation method can be used to predict
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hypothetical tendencies of the CO2 concentration in the future
(and then temperature) if human activities do not destroy this
stationarity hypothesis.

Many procedures are available to extract the amplitudes of
the spectral peaks, mainly based on estimations of correlation
functions and power spectra [3], [18]. In this paper, a new
reconstruction method giving access to individual filteredcom-
ponents was applied, giving the amplitude and phase of each
spectral component (and of partial sums). The width of the
spectral peaks was found to be not negligible. Among possible
reasons, we can mention a deviation from the stationarity
assumption, the finite length of measurements, some errors
in the determination of the sampling instants and of the CO2

concentrations.

V. A PPENDIX

Let us assume that spectral densitysU (f) of U (t) has a
bounded support

sU (f) = 0, f /∈ [α, β] .

The FSE (Fourier Series Expansion) ofe2iπft on [α, β] is

e2iπft =
∑

n∈Z

cn (t) e
2iπ nf

β−α (16)

with

cn (t) =
1

β−α

β∫
α

e2iπfte−2iπ nf
β−α df =

eiπ[(β+α)(t− n
β−α )]sincπ [(β − α) t− n] .

(17)

The FSE in (16) also leads to

e2iπf(t+θ) =
∑
n∈Z

cn (t) e
2iπf[θ+ n

(β−α) ]

e2iπft =
∑
n∈Z

cn (t− θ) e2iπf[θ+
n

(β−α) ]

implying the sampling formula

U (t) =
∑

n∈Z

cn (t− θ)U

(
θ +

n

β − α

)
. (18)
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WhenU(t) is replaced byZk(t) with

α = (k − 1) a/L, β = ka/L, k > 0
α = ka/L, β = (k + 1) a/L, k < 0

thenβ−α = a/L and the following set of formulas is obtained
from (17) and (18)

Zk (t) =
∑
n∈Z

cnk (t− θ)Zk

(
θ + nL

a

)

e−iπa(2k−1) t−θ
L Zk (t) =

∑
n∈Z

(−1)
n sincπ

[
a
L
(t− θ)− n

]

Zk

(
θ + nL

a

)
, k ≥ 1

e−iπa(2k+1) t−θ
L Zk (t) =

∑
n∈Z

(−1)
n sincπ

[
a
L
(t− θ)− n

]

Zk

(
θ + nL

a

)
, k ≤ −1.

Using (5), summation overk of the previous equations leads
to

∑
1≤|k|≤L

e−iπa(2k−sgnk) t−θ
L Zk (t) =

∑
n∈Z

(−1)
n sincπ

[
a
L
(t− θ)− n

]
Z
(
θ + nL

a

) (19)

where sgn(k) = 1 whenk ≥ 1 and−1 for k ≤ −1, resulting
in the expression in (6).
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